Coverage for HARK / metric.py: 85%
53 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-07 05:16 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-07 05:16 +0000
1from warnings import warn
3import numpy as np
6def distance_lists(list_a, list_b):
7 """
8 If both inputs are lists, then the distance between them is the maximum
9 distance between corresponding elements in the lists. If they differ in
10 length, the distance is the difference in lengths.
11 """
12 len_a = len(list_a)
13 len_b = len(list_b)
14 if len_a == len_b:
15 return np.max([distance_metric(list_a[n], list_b[n]) for n in range(len_a)])
16 return np.abs(len_a - len_b)
19def distance_dicts(dict_a, dict_b):
20 """
21 If both inputs are dictionaries, call distance on the list of its elements.
22 If both dictionaries have matching distance_criteria entries, compare only those keys.
23 If they do not have the same keys, return 1000 and raise a warning. Nothing
24 in HARK should ever hit that warning.
25 """
26 # Check whether the dictionaries have matching distance_criteria
27 if ("distance_criteria" in dict_a.keys()) and (
28 "distance_criteria" in dict_b.keys()
29 ):
30 crit_a = dict_a["distance_criteria"]
31 crit_b = dict_b["distance_criteria"]
32 if len(crit_a) == len(crit_b):
33 check = [crit_a[j] == crit_b[j] for j in range(len(crit_a))]
34 if np.all(check):
35 # Compare only their distance_criteria
36 return np.max(
37 [distance_metric(dict_a[key], dict_b[key]) for key in crit_a]
38 )
40 # Otherwise, compare all their keys
41 if set(dict_a.keys()) != set(dict_b.keys()):
42 warn("Dictionaries with keys that do not match are being compared.")
43 return 1000.0
44 return np.max([distance_metric(dict_a[key], dict_b[key]) for key in dict_a.keys()])
47def distance_arrays(arr_a, arr_b):
48 """
49 If both inputs are array-like, return the maximum absolute difference b/w
50 corresponding elements (if same shape). If they don't even have the same number
51 of dimensions, return 10000 times the difference in dimensions. If they have
52 the same number of dimensions but different shapes, return the sum of differences
53 in size for each dimension.
54 """
55 shape_A = arr_a.shape
56 shape_B = arr_b.shape
57 if shape_A == shape_B:
58 return np.max(np.abs(arr_a - arr_b))
60 if len(shape_A) != len(shape_B):
61 return 10000 * np.abs(len(shape_A) - len(shape_B))
63 dim_diffs = np.abs(np.array(shape_A) - np.array(shape_B))
64 return np.sum(dim_diffs)
67def distance_class(cls_a, cls_b):
68 """
69 If none of the above cases, but the objects are of the same class, call the
70 distance method of one on the other.
71 """
72 if isinstance(cls_a, type(lambda: None)):
73 warn("Cannot compare lambda functions. Returning large distance.")
74 return 1000.0
75 return cls_a.distance(cls_b)
78def distance_metric(thing_a, thing_b):
79 """
80 A "universal distance" metric that can be used as a default in many settings.
82 Parameters
83 ----------
84 thing_a : object
85 A generic object.
86 thing_b : object
87 Another generic object.
89 Returns:
90 ------------
91 distance : float
92 The "distance" between thing_a and thing_b.
93 """
95 # If both inputs are numbers, return their difference
96 if isinstance(thing_a, (int, float)) and isinstance(thing_b, (int, float)):
97 return np.abs(thing_a - thing_b)
99 if isinstance(thing_a, list) and isinstance(thing_b, list):
100 return distance_lists(thing_a, thing_b)
102 if isinstance(thing_a, np.ndarray) and isinstance(thing_b, np.ndarray):
103 return distance_arrays(thing_a, thing_b)
105 if isinstance(thing_a, dict) and isinstance(thing_b, dict):
106 return distance_dicts(thing_a, thing_b)
108 if isinstance(thing_a, type(thing_b)):
109 return distance_class(thing_a, thing_b)
111 # Failsafe: the inputs are very far apart
112 return 1000.0
115class MetricObject:
116 """
117 A superclass for object classes in HARK. Comes with two useful methods:
118 a generic/universal distance method and an attribute assignment method.
119 """
121 distance_criteria = [] # This should be overwritten by subclasses.
123 def distance(self, other):
124 """
125 A generic distance method, which requires the existence of an attribute
126 called distance_criteria, giving a list of strings naming the attributes
127 to be considered by the distance metric.
129 Parameters
130 ----------
131 other : object
132 Another object to compare this instance to.
134 Returns
135 -------
136 (unnamed) : float
137 The distance between this object and another, using the "universal
138 distance" metric.
139 """
140 try:
141 return np.max(
142 [
143 distance_metric(getattr(self, attr_name), getattr(other, attr_name))
144 for attr_name in self.distance_criteria
145 ]
146 )
147 except (AttributeError, ValueError):
148 return 1000.0